Received 8 February 2005 Accepted 16 February 2005

Online 26 February 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Werner Kraus,^a Holger Stephan,^b Anita Röllich,^b Zdenek Matějka^c and Günter Reck^a*

^aBundesanstalt für Materialforschung und -prüfung, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany, ^bForschungszentrum Rossendorf, Institut für Bioanorganische und Radiopharmazeutische Chemie, Postfach 510119, 01314 Dresden, Germany, and ^cInstitute of Chemical Technology Prague, Department of Power Engineering, Technická 5, 16628 Prague 6, Czech Republic

Correspondence e-mail: w.kraus@bam.de

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (o–O) = 0.010 Å H-atom completeness 0% Disorder in main residue R factor = 0.039 wR factor = 0.097 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$K_6H_2[TiW_{11}CoO_{40}]$ ·13 H_2O , with a monotitanoundecatungstocobaltate(II) anion

Hexapotassium dihydrogen monotitanoundecatungstocobaltate(II) tridecahydrate, K_6H_2 [Ti $W_{11}CoO_{40}$]·13H₂O, crystallizes from aqueous solution in the cubic space group $P\overline{4}3m$. The structure was refined as an inversion twin. The [Ti $W_{11}CoO_{40}$]^{8–} anion has a Keggin structure with one W-atom site occupied by titanium and a central tetrahedral CoO₄ group.

Comment

In recent years, interest in the chemistry of metal-oxygen clusters has grown due to their applications in areas including catalysis, materials chemistry and biochemistry (Pope, 1983; Pope & Müller, 2001). In the latter context, polyoxometalates (POMs) show unique transport behavior in living cells, and may act as antiviral and antitumoral agents (Rhule *et al.*, 1998). Specifically, the title compound, K_6H_2 [TiW₁₁CoO₄₀], reveals promising antitumor activity when applied as starch and liposome hybrid materials (Wang *et al.*, 2003; Yang *et al.*, 2004). The structural characterization of K_6H_2 [TiW₁₁CoO₄₀]-13H₂O is reported here.

The cluster ion has a Keggin (1933) structure. It can be viewed as a shell of $\{W_{11}TiO_{36}\}$ encapsulating a central tetrahedral $\{CoO_4\}$ group (Fig. 1). Alternatively, the cluster anion may be described as constructed from $12\{W_{0.92}Ti_{0.08}O_6\}$ octahedra. According to the coordination environment of oxygen in the anion cluster, the O atoms can be divided into

Figure 1

The cluster anion $[TiW_{11}CoO_{40}]^{8-}$, showing 30% probability displacement ellipsoids. The labels of symmetry-equivalent atoms have been omitted for clarity.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 The coordination spheres of the two K atoms.

four groups. Two kinds of O atoms in the shell are connected to the tungsten sites. One bridging O atom (O1) has a distance of only 1.819 (4) Å to tungsten and the W1^{iv}-O1-W1 angle is 148.1 (9)°. The second bridging O atom (O4) has a distance of 2.034 (8) Å to tungsten and a smaller angle of 118.6 (7)° (W1^v-O4-W1; symmetry codes are given in Table 1). Atom O4 forms hydrogen bonds to atom O5 of water molecules outside the shell $[O4\cdots O5 = 2.70 (2) \text{ Å}]$. The terminal O3 atoms are connected to only one tungsten atom [O3-W1 =1.711 (11) Å]. The O2 atoms from the {CoO4} group connected to W1 have a distance of 2.231 (7) Å.

In the crystal packing, two symmetry-independent potassium atoms, K1 and K2, have been found, K2 being positionally disordered. K1 is coordinated by eight cluster O atoms, and K2 by four cluster O atoms and four water molecules (Fig. 2). The compound contains 13 water molecules per cluster. The coordination polyhedron formed by K atoms and water molecules stabilizes the cluster anions in a threedimensional network.

 $K_6H_2[TiW_{11}CoO_{40}]\cdot 13H_2O$ is soluble in water (~0.06 *M*) and practically insoluble in organic solvents. The visible absorption spectrum shows a broad peak with three shoulders in the range 520–680 nm, characteristic of tetrahedral Co^{II} complexes in polyoxotungstates (Nomiya *et al.*, 1981). $K_6H_2[TiW_{11}CoO_{40}]\cdot 13H_2O$ exhibits the typical charge transfer band at 257 nm (bridging oxygen in W1–O1–W1). This peak has been selected to study the hydrolytic stability of the title compound. A remarkable decrease of this charge transfer band has been observed at a pH of 7.4, indicating the degradation of the cluster structure.

Experimental

K₆H₂[TiW₁₁CoO₄₀]·13H₂O was prepared according to the method described by Chen *et al.* (1997). TiOSO₄ was used instead of Ti(SO₄)₂ dissolved in H₂SO₄. X-ray quality crystals were grown by slow evaporation of an aqueous solution at room temperature. Analysis calculated for CoH₂₈K₆O₅₃TiW₁₁: H 0.87, K 7.24, Ti 1.48, Co 1.82, W 62.42%; found: H 0.88, K 7.2, Ti 1.5, Co 1.8, W 62.5%. UV/vis (H₂O, nm): 257 (ε = 37000 M^{-1} cm⁻¹), 570 (ε = 120 M^{-1} cm⁻¹), 590 (ε = 200 M^{-1} cm⁻¹), 625 (ε = 300 M^{-1} cm⁻¹); IR (KBr, cm⁻¹): ν_{as} 443 (Co–O2), 759 (W–O1–W), 865 (W–O4–W), 933 (W=O3).

Cell parameters from 942

 $0.09 \times 0.05 \times 0.04 \text{ mm}$

730 independent reflections 516 reflections with $I > 2\sigma(I)$

reflections

 $\mu = 26.93 \text{ mm}^{-1}$

T = 273 (2) K

Block, blue

 $R_{\rm int} = 0.091$

 $\theta_{\rm max} = 30.4^{\circ}$

 $h = -14 \rightarrow 13$

 $k = -10 \rightarrow 14$

 $l = -14 \rightarrow 11$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 1.64 \text{ e Å}$

 $\Delta \rho_{\rm min} = -1.66 \text{ e } \text{\AA}^{-3}$

315 Friedel pairs

Flack parameter: 0.43 (6)

Extinction correction: SHELXL97

Extinction coefficient: 0.0093 (8)

Absolute structure: Flack (1983),

 $\theta = 2.7 - 28.1^{\circ}$

Crystal data

 K_6H_2 [TiW₁₁CoO₄₀]·13H₂O $M_r = 3240.00$ Cubic, $P\overline{4}3m$ a = 10.6850 (16) Å V = 1219.9 (3) Å³ Z = 1 $D_x = 4.410$ Mg m⁻³ Mo Kα radiation

Data collection

Bruker SMART CCD area-detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.217, T_{\max} = 0.390$ 8248 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.097$ S = 0.98730 reflections 45 parameters H atoms not located $w = 1/[\sigma^2(F_o^2) + (0.0494P)^2 + 8.0204P]$ $where <math>P = (F_o^2 + 2F_c^2)/3$

 Table 1

 Selected geometric parameters (Å, °).

W1-O3	1.711 (11)	K1-O4	2.851 (12)
W1-O1 ⁱ	1.819 (4)	K1-O1	2.861 (15)
W1-O4 ⁱⁱ	2.034 (8)	K2-O3	2.70 (2)
W1-O2	2.231 (7)	$K2 - O3^{iii}$	2.78 (2)
Co1-O2	1.906 (17)		
$W1^{iv} - O1 - W1$	148.1 (9)	$W1^{v}-O4-W1$	118.6 (7)
Symmetry codes: (i) y = z + 1 = x + 1; (y)	-z + 1, x, -y + 1;	(ii) z, x, y ; (iii)	x, -y, -z + 1; (iv)

y, -z + 1, -x + 1; (v) y, z, x.

Ti atoms are found to be statistically distributed over the tungsten positions. After location of the K atoms, the atoms of the Keggin anion and atom O5 of the water molecule, the strongest peak of the difference Fourier map was found in a large cavity and interpreted as an additional O atom (O6) of a rotationally disordered water molecule. This water molecule occupies a centre of symmetry and is linked in the crystal structure only by van der Waals interactions. The H atoms could not be located by difference Fourier synthesis. The highest peak and the deepest hole in the final difference Fourier map are located 0.54 Å from W1 and 1.72 Å from O1, respectively. The refinement of the Flack (1983) parameter (0.43) clearly indicates the occurrence of an inversion twin.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

References

Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SHELXTL and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, Y. & Liu, J. (1997). Synth. React. Inorg. Met.-Org. Chem. 27, 239–250. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Keggin, J. F. (1933). Nature (London), 131, 908.
- Nomiya, K., Miwa, M., Kobayshi, R. & Aiso, M. (1981). Bull. Chem. Soc. Jpn, 54, 2983–2987.
- Pope, M. T. (1983). *Heteropoly and Isopoly Oxometalates*. Berlin; Springer-Verlag.
- Pope, M. T. & Müller A. (2001). Editors. Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications. Dordrecht/Boston/London: Kluwer Academic Publishers.
- Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. Rev. 98, 327–357.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, X., Liu, J. & Pope, M. T. (2003). Dalton Trans. pp. 957-960.
- Yang, Y., He, J., Wang, X., Li, B. & Liu, J. (2004). Trans. Metal Chem. 29, 96-99.